Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Zulfiqar Ali,^a Ikhlas A. Khan^{a,b} and Frank R. Fronczek^c*

^aNational Center for Natural Products Research, University of Mississippi, University, MS 38677, USA, ^bDepartment of Pharmacognosy, School of Pharmacy, University of Mississippi, University, MS 38677, USA, and ^cDepartment of Chemistry, Louisiana State University, Baton Rouge, LA 70803-1804, USA

Correspondence e-mail: ffroncz@lsu.edu

Key indicators

Single-crystal X-ray study T = 100 KMean σ (C–C) = 0.004 Å R factor = 0.044 wR factor = 0.081 Data-to-parameter ratio = 8.7

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

Revision of the structure of podocarpaside *E*, from *Actaea podocarpa*

The title compound, (I), 3β ,15 α ,25-trihydroxy-16,23-dioxo-6 α ,19 α -epidioxy-9,10-*seco*-9,19-cyclolanost-5(10),9(11)-diene 3-O- α -L-arabinopyranoside, crystallizes as the monohydrate, C₃₅H₅₂O₁₁·H₂O. It has an *endo*-epoxide rather than two OH groups on its seven-membered ring. The O–O distance is 1.473 (3) Å, and the C–O–O–C torsion angle is –30.4 (3)°. O···O distances in hydrogen bonds are in the range 2.679 (3)– 3.015 (3) Å.

Comment

We recently described (Ali *et al.*, 2007) the isolation and characterization of podocarpasides A-G, which are 9,10-seco-9,19-cyclolanostane arabinosides from the roots of *Actaea podocarpa*. This species, found in forests of the high Appalachian Mountains of the eastern USA, is closely related to black cohosh, a well known herbal medicine useful for treatment of menstrual pain and menopausal disorders.

One constituent, podocarpaside *D*, was characterized by crystal structure determination, and the others by spectroscopic methods, including extensive two-dimensional NMR techniques. The title compound was spectroscopically characterized as having β -OH groups at C6 and C19, based partially on a small pseudomolecular ion peak in the HRESIMS spectrum, which suggested the formula $C_{35}H_{54}O_{11}$. Crystals of the monohydrate, (I), have now been grown, and their structure (Fig. 1) reveals an α -endo-epoxide bridging the seven-membered ring, rather than two OH groups. Rerecorded HRESIMS on crystalline podocarpaside *E* clearly showed a larger pseudomolecular ion peak, corresponding to the formula found by the crystal structure determination, and we conclude that our previous interpretation of the spectroscopic data (Ali *et al.*, 2007) was incorrect.

Selected geometric paramaters for (I) are given in Table 1. While podocarpaside D has an extended conformation, the epoxidation of the seven-membered ring, as well as the β

Received 12 March 2007 Accepted 22 March 2007

Acta Cryst. (2007). E63, o2101-o2103

All rights reserved

© 2007 International Union of Crystallography

Figure 1

The asymmetric unit of (I), with 50% probability displacement ellipsoids, showing the atom-numbering scheme. H atoms on C are not shown.

Figure 2

A view showing the intramolecular hydrogen bond and hydrogen bonding to water molecules (dashed lines). H atoms are shown with arbitrary radius, and the unlabelled water molecule is related by the symmetry operator (x + 1, y, z).

orientation of the arabinose substituent, impart a folded conformation to (I). The water molecule is inside the fold, where it is the donor in two hydrogen bonds and the acceptor for a third. There is also an $O-H\cdots O$ intramolecular hydrogen bond (Table 2).

Experimental

The isolation of podocarpaside E has been described previously (Ali *et al.*, 2007). Crystals of the monohydrate, (I), were grown from undried methanol.

Crystal data

$C_{35}H_{52}O_{11}\cdot H_2O$ V =	= 3437.8 (12) Å ³
$M_r = 666.78$ Z =	= 4
Orthorhombic, $P2_12_12_1$ Mo	ο Kα radiation
$a = 7.6672 (15) \text{ Å}$ $\mu =$	$= 0.10 \text{ mm}^{-1}$
b = 15.324 (3) Å $T =$	= 100 K
c = 29.260 (6) Å 0.4	$2 \times 0.05 \times 0.05 \text{ mm}$

Data collection

Nonius KappaCCD area-detector	
diffractometer (with Oxford	
Cryostream cooler)	
Absorption correction: none	
-	

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.044$ H atoms treated by a mixture of
independent and constrained
refinementS = 1.03refinement3870 reflections $\Delta \rho_{max} = 0.21 \text{ e } \text{\AA}^{-3}$ 443 parameters $\Delta \rho_{min} = -0.22 \text{ e } \text{\AA}^{-3}$

11976 measured reflections 3870 independent reflections

 $R_{\rm int}=0.054$

2917 reflections with $I > 2\sigma(I)$

Table 1

Selected geometric parameters (Å, °).

O2-C6	1.438 (3)	C5-C10	1.330 (4)
02-03	1.473 (3)	C9-C11	1.336 (4)
O3-C19	1.447 (4)		
C6-O2-O3	109.6 (2)	C19-O3-O2	113.29 (19)
C6-O2-O3-C19	-30.4(3)	C7-C8-C9-C19	36.3 (3)
C10-C5-C6-C7	77.4 (3)	C6-C5-C10-C19	-8.7(4)
C5-C6-C7-C8	-27.5 (4)	C5-C10-C19-C9	-76.9(3)
C6-C7-C8-C9	-51.3 (3)	C8-C9-C19-C10	51.3 (3)

Table 2		
Hydrogen-bond geometry	(Å,	°).

$D - H \cdot \cdot \cdot A$	$D-\mathrm{H}$	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
O4−H4···O11 ⁱ	0.84	1.99	2.762 (3)	152
$O7 - H7 \cdots O6$	0.84	2.22	2.838 (3)	130
O9−H9· · ·O10 ⁱⁱ	0.84	2.28	3.015 (3)	146
$O10-H10\cdots O1W$	0.84	1.86	2.683 (3)	165
O11−H11…O10 ⁱⁱⁱ	0.84	1.86	2.679 (3)	163
$O1W - H2W \cdots O5^{iv}$	0.97 (4)	1.92 (4)	2.815 (3)	153 (3)
$O1W - H1W \cdots O7^{iv}$	0.87 (3)	1.99 (3)	2.847 (3)	171 (3)

Symmetry codes: (i) x + 1, y, z; (ii) $x + \frac{1}{2}$, $-y + \frac{1}{2}$, -z + 1; (iii) $x - \frac{1}{2}$, $-y + \frac{1}{2}$, -z + 1; (iv) x - 1, y, z.

H atoms on C were placed in idealized positions, with C–H distances of 0.95–1.00 Å, and treated as riding. H atoms of OH groups positioned to give optimum fit to the observed electron density, with O–H = 0.84 Å and C–O–H = 109.5°. A torsional parameter was refined for each methyl and OH group. The coordinates of the water H atoms were refined. $U_{\rm iso}(H) = 1.2U_{\rm eq}({\rm parent})$, or $1.5U_{\rm eq}({\rm parent})$ for methyl and OH. The absolute configuration could not be determined, but was assigned to correspond with that of α -L-arabinose. Friedel pairs were averaged.

Data collection: *COLLECT* (Nonius, 2000); cell refinement: *DENZO* and *SCALEPACK*; data reduction: *DENZO* and *SCALEPACK* (Otwinowski & Minor, 1997); program(s) used to solve structure: *SIR97* (Altomare *et al.*, 1999); program(s) used to refine structure: *SHELXL97* (Sheldrick, 1997); molecular graphics: *ORTEP-3 for Windows* (Farrugia, 1997); software used to prepare material for publication: *SHELXL97*.

The purchase of the diffractometer was made possible by grant No. LEQSF(1999–2000)-ESH-TR-13, administered by the Louisiana Board of Regents.

References

- Ali, Z., Khan, S. I., Fronczek, F. R. & Khan, I. A. (2007). Phytochemistry, 68, 373-382.
- Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115-119.

- Farrugia, L. J. (1997). J. Appl. Cryst. **30**, 565. Nonius (2000). COLLECT. Nonius BV, Delft, The Netherlands.
- Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.
- Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany.